Forecasting electricity consumption of OECD countries: A global machine learning modeling approach
dc.authorid | Gunay, M. Erdem/0000-0003-1282-718X|Sen, Doruk/0000-0003-3353-5952 | |
dc.authorwosid | Sen, Doruk/D-4547-2016 | |
dc.contributor.author | Sen, Doruk | |
dc.contributor.author | Tunc, K. M. Murat | |
dc.contributor.author | Gunay, M. Erdem | |
dc.date.accessioned | 2024-07-18T20:58:30Z | |
dc.date.available | 2024-07-18T20:58:30Z | |
dc.date.issued | 2021 | |
dc.department | İstanbul Bilgi Üniversitesi | en_US |
dc.description.abstract | Electricity is a critical utility for social growth. Accurate estimation of its consumption plays a vital role in economic development. A database that included past electricity consumption data from all OECD countries was prepared. Since national trends may be transferable from one country to another, the entire database was modeled and simulated via machine learning techniques to forecast the energy consumption of each country. Understanding similarities among the profiles of different countries could increase predictive accuracy and improve associated public policies. | en_US |
dc.identifier.doi | 10.1016/j.jup.2021.101222 | |
dc.identifier.issn | 0957-1787 | |
dc.identifier.issn | 1878-4356 | |
dc.identifier.scopus | 2-s2.0-85105546568 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jup.2021.101222 | |
dc.identifier.uri | https://hdl.handle.net/11411/8988 | |
dc.identifier.volume | 70 | en_US |
dc.identifier.wos | WOS:000658799200003 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.relation.ispartof | Utilities Policy | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | Support Vector Machine | en_US |
dc.subject | Natural-Gas Consumption | en_US |
dc.subject | Energy-Consumption | en_US |
dc.subject | Time-Series | en_US |
dc.subject | Socioeconomic Indicators | en_US |
dc.subject | Neural-Network | en_US |
dc.subject | Demand | en_US |
dc.subject | Combination | en_US |
dc.subject | Regression | en_US |
dc.subject | Arima | en_US |
dc.title | Forecasting electricity consumption of OECD countries: A global machine learning modeling approach | en_US |
dc.type | Article | en_US |