Automatic detection of attachment style in married couples through conversation analysis

dc.WoS.categoriesAcousticsEngineering, Electrical & Electronicen_US
dc.authorid0000-0002-2229-2062en_US
dc.contributor.authorKoçak, Tuğçe Melike
dc.contributor.authorDibek, Büşra Çilem
dc.contributor.authorPolat, Esma Nafiye
dc.contributor.authorKafesçioğlu, Nilüfer
dc.contributor.authorDemiroğlu, Cenk
dc.date.accessioned2023-09-15T07:14:16Z
dc.date.available2023-09-15T07:14:16Z
dc.date.issued2023-05-31
dc.description.abstractAnalysis of couple interactions using speech processing techniques is an increasingly active multi-disciplinary field that poses challenges such as automatic relationship quality assessment and behavioral coding. Here, we focused on the prediction of individuals' attachment style using interactions of recently married (1-15 months) couples. For low-level acoustic feature extraction, in addition to the frame-based acoustic features such as mel-frequency cepstral coefficients (MFCCs) and pitch, we used the turn-based i-vector features that are the commonly used in speaker verification systems. Sentiments, positive and negative, of the dialog turns were also automatically generated from transcribed text and used as features. Feature and score fusion algorithms were used for low-level acoustic features and text features. Even though score and feature fusion algorithms performed similar, predictions with score fusion were more consistent when couples have known each other for a longer period of time.en_US
dc.fullTextLevelFull Texten_US
dc.identifier.doi10.1186/s13636-023-00291-w
dc.identifier.issn1687-4722
dc.identifier.scopus2-s2.0-85160943068en_US
dc.identifier.urihttps://hdl.handle.net/11411/5186
dc.identifier.urihttps://doi.org/10.1186/s13636-023-00291-w
dc.identifier.wosWOS:000998467900001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.issue1en_US
dc.language.isoenen_US
dc.nationalInternationalen_US
dc.numberofauthors5en_US
dc.publisherSPRINGERen_US
dc.relation.ispartofEURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSINGen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFEATURE-SELECTIONen_US
dc.subjectINFANTen_US
dc.subjectCOMMUNICATIONen_US
dc.subjectEMOTIONen_US
dc.subjectMOTHERen_US
dc.subjectSYNCHRONYen_US
dc.subjectCLASSIFICATIONen_US
dc.subjectSATISFACTIONen_US
dc.subjectMETAANALYSISen_US
dc.subjectINFORMATIONen_US
dc.titleAutomatic detection of attachment style in married couples through conversation analysis
dc.typeArticle
dc.volume2023en_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
2023WosDibek.pdf
Boyut:
1.79 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: