A multiple sensor fusion based drift compensation algorithm for mecanum wheeled mobile robots
Küçük Resim Yok
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Tubitak Scientific & Technological Research Council Turkey
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
This paper investigates a multiple sensor fusion based drift compensation technique for a mecanum wheeled mobile robot platform. The mobile robot is equipped with high-precision encoders integrated to the wheels and four accelerometers placed on its chassis. The proposed algorithm combines the information from the encoders and the acceleration sensors to estimate the total drift in the acceleration dimension. The inner loop controller is designed utilizing a disturbance-observer-based acceleration control structure which is blind against the slipping motion of the wheels. The estimated drift acceleration from the sensor fusion is then mapped back to the joint space of the robot and used as additional compensation over the existing controllers. The proposed algorithm is tested on a series of experiments. The results of the experiments are also compared with those of a recent study in order to provide a benchmark evaluation. The enhanced tracking performance yielding towards smaller error magnitudes in the experiments illustrate the efficacy and success of the proposed control architecture in attenuating the positioning drift of mecanum wheeled robots.
Açıklama
Anahtar Kelimeler
Holonomic Mobile Robot, Mecanum Wheel, Drift Compensation, Sensor Fusion, Acceleration Control, Motion Control, Localization, System
Kaynak
Turkish Journal of Electrical Engineering and Computer Sciences
WoS Q Değeri
Q4
Scopus Q Değeri
Q3
Cilt
29
Sayı
2